THE DYNAMIC PROBLEMS OF THERMAL ELASTICITY
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We examine the stresses which arise in an elastic half-space when the surface of the latter
is suddenly heated, bearing in mind the rates of expansion-wave propagation in an elastic
medium and the finite rate of heat propagation.

The dynamic problems of thermal elasticity were first treated in [1, 2], these papers devoted
to the study of the stressed state resulting from the sudden heating of the plane surrounding an elastic
half-space. These problems were subsequently again considered by Mura [3, 4] who apparently was un-
aware of [1, 2]. Further investigation of the dynamic problems of thermal elasticity are described in [5-
9] and elsewhere. In each of these references the temperature field is described with the Fourier equa-
tion.

It is demonstrated in [10, 11] that for metals with a great temperature gradient there exists no clas-
sical relationship between the heat flow and the gradient. This indicates that the solutions of the heat-con-
duction equation used in [1-9] do not correspond to the true temperature field. For the solution of the dy-
namic problems of thermal elasticity we therefore have to employ the new hyperbolic heat-conduction
equation derived with consideration of the finite rate of heat propagation [12-15].

Let us consider an elastic half-space at a temperature T; the temperature field [15] is described
by the equation
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At the instant t = 0 the surface temperature of the half-space varies jumpwise to T, and then remains
constant. To determine the temperature field we should solve Eq. (1) with the boundary conditions

0T (z, 0)
ot

T(z, 0) =T, =0, T, =T, 2

To determine the stresses [16] we have to solve the equation
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We will assume that the half-space is initially free of stresses and that there are no stresses on its
surface as the body is heated. The boundary conditions for Eq. (3) will then be
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After determining o,, and T we can determine the remaining components of the stress tensor easily
from [16]:
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Let us introduce the following dimensionless quantities:
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With the aid of (6) we can write Egs. (1)-(4) in the form
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After applying the Laplace transform
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to Eq. (7), with consideration of the boundary conditions (8) and of the fact that as £ — « the temperature
must remain bounded, we find the image of the temperature, ie.,
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The reconversion leads to the following relationship:

= ]
. : oW Ii[l/ xz_(é%)zild

0 7)=n{—EM)exp (——~—) + »SGXP(——X).

oM | oM ., (E ¢
X l/"“(m

2M

X, (12)

where
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After application of the Laplace transform
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to Eq. (9), with consideration of the first two conditions in (10), we have
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Having substituted (11) into Eq. (13) and bearing in mind that E(O, s) = 0 and that as £ — « the stresses
must remain bounded, we find for the images
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Reconversion yields
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If the heat-propagation rate ¢, is considerably greater than the rate of propagation for the elastic
waves, we have M = 0 and the solution coincides with the data in [1] and [4]:

G 1) =n(t—§) exp (t — &) — % e [eg erfc (2 f‘/? +v ) -+ eSerfc (2 f/;— VT H (16)
NOTATION
T is the temperature;
Z is a coordinate;
t is the time;
a is the thermal diffusivity;
cq is the rate of heat propagation;
Oyy is the stress;
c is the rate of propagation for the elastic waves;
i is the Poisson ratio;
o is the coefficient of thermal expansion;
P is the mass of the volume unit;
E is Young's modulus.
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